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Final Report: AMG: Basic Development, Applications and Theory

I. Introduction

D The central focus was the study of algebraic multigrid (AMG), which was
in fact developed under this project. Since most of the papers previously
submitted to AFOSR included a description of AMG and the major results of the
project, only a brief overview will be given here.

~> Conventional or geometric multigrid algorithms depend on knowledge of the
underlying geometry for a given problem (e.g., a partial differential equa-
tion) . This krwfedge is used to predetermine coarser grids and the attencant
operators and intergrid transfers. Although very efficient solvers can be
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developed in this way, the dissemination and use of geometric multigrid have
been impeded by/t.he need to tailor the algorithm to each application. A
fairly general "black box" solver based on multigrid principles would be use-
ful in overcaming these difficulties and pramting multigrid applications.
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Algebraic multigrid uses no explicit knowledge of an underlying geometry
to produce coarser levels. In fact, only the matrix entries and a few algo-
rithm parameters are used to determine the coarser levels and the remaining
multigrid processes. The motive is to maintain the typical multigrid
efficiency by determining coarser levels that properly reflect the errors that
relaxation cannot effectively recuce.

For certain classes of matrices (e.g., symmetric positive-type), the means
for obtaining this notive is relatively easy to describe: It can be shown
(B2) that point Gauss-Seidel for such matrices achieves (algebraic) smoothness
in the sense that the errors after just a few sweeps are "locally constant", that
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is, variables that are strongly coupled via large off-diagonal matrix entries

must exhibit similar errors in the approximate solution. The coarsening
process may therefore use a Ritz-type variational formulation in an attempt
to approximate such errors, that is, it is enough to determine an interpolation —— -

T

approximation property must be achieved while maintaining low complexity of ]

,
process that ensures that such errors are in the range of interpolation. This ‘1'4-
i
R
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the resulting coarse level problems. This can generally be accomplished by

p-point interpolation which is an efficient way of ensuring that each variable “—“*::
P

that does not become a coarse level variable is strongly dependent on approxi- - e
mately p that are. The means for implementing this process are quite campli- L n
cated (B3), but the principles are straightforward. Moreover, sharp ._.4
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convergence rates can be proved in this case and in more general cases,
including block positive-type matrices such as those that arise from dis-
cretizing Stokes's equations (cf. (B2)).

The main difficulty in applying AMG to new classes of matrices is one of
determining the sense of smoothness (of relaxed errors) for these classes.
Once this sense is determined, efficient coarse-to-fine interpolations can be
devised. Automatic ways for corputationally detecting the sense of smoothness
from preliminary relaxation sweeps are one of the main objectives of the
proposed research. Such methods are expected to enhance the AMG efficiency

even for classes w?uere it is already successfully applied.

AMG should not be viewed as a way to campletely eliminate the need to
carefully consider each application. It will never be a complete black box
solver in the sense that it will work efficiently over all symmetric positive
definite matrices, say. No method does. But it can become a significant
camputational tool that will significantly reduce the design effort for multi-
grid applications. It should also lead to a better understanding of the multi-
grid processes themselves and provide guidance in the coarsening process for
new applications.

AMG shows much promise. During the project, it was in fact applied to a
wide variety of essentially positive-type problems, including anisotropic and
ill-behaved diffusion equations as well as certain nonsymmetric problems,
especially convection dominated diffusion equations, and some purely algebraic
problems that arise in geodesy, with extension to a broader class of problems,
applications, and software development. The following sections will briefly
discuss only the broader areas of progress made during the project.

I1. Areas of Progress

The abjective of this project was the systematic development and analysis
of algebraic multigrid methods for solving partial differential boundary value
problems. This began gradually, continuing the progression fram simpler
praoblems to more difficult ones, introducing each complexity in its turm, and
studying first each difficulty in isolation from others. (Application-
oriented multigrid studies have too often started with too complicated a
problem and have as a result failed to realize some of the crucial algo-
rithmic features.)
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1. Basic AMG Development
The basic efforts of algorithm development are categorized as follows:
a. Symmetry. The project team developed a fully automatic AMG (B2)
for treating essentially positive-type symmetric matrices (matrices with the
property that their dominant part has nonpositive off-diagonal entries and
nonnegative row sums).

Another direction of the current project, which is relevant even to

e
positive~type cases, was the study of methods for obtaining enhanced inter- f-?
polation accuracy, To be specific, even though an algebraic sense of smooth- "
ness is known (B2, Sec. 3.5), it may be fairly crude so that the effective _,

order of interpolation is too low (cf. the exarple in (B2, Sec. 4.7)).
Although the W-cycle rates are reasanable even for such cases, it is impor-
tant to attempt to achieve a better sense of sroothing here. Prerelaxation
methods were developed far this purpose. The basic idea of this approach is
to perform a few relaxation sweeps on several initial approximations of the
hamogeneous system in order to obtain a representative set of vectors that ';j:
exhibit smoothness. These vectors can then be easily examined to determine
the common relationships between components of srooth vectors and to provide
a basis for determining interpolation.

Another objective in the study of symmetric problems was the treatment :-:
of the more general class of locally positive definite (B2) matrices. For _'13:
such matrices that are not essentially block positive-type, a crude sense of ;_:
smoothness can be determined from the explicit local form that characterizes i34
this class (B2, Sec 3.5). Yet this form is not always explicitly available L
and, even when it is, may not be explicit for the coarser level matrices.
The simplest example for this situation is a general M matrix where the scaling i
needed to convert it to positive-type is not explicitly given. The first step o
here was, therefore, to apply AMG to such an M-matrix, A. This was done using -7
a simple prerelaxation scheme of the above type. In this case the "smoothing ;'.',.
relations” that the prerelaxation provided are equivalent to approximately :i-

' finding the relative scalings (i.e., the approximate ratios between the ¥
entries of the positive diagonal matrix D for which DAD is positive-type). .-"

This was achieved to the degree that is needed by just a few relaxation R

sweeps on the homogeneous system with an initial guess related to the diagonal ;'.

of A. :\.’
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b. Nonsymmetry. Experiments with nonsymretric matrices focused on el
determining how far the "symmetric" version of AMG could be carried. ‘_:;--::-:
| Basing the process entirely on the rows of the matrix, the experiments in --', X
(S1) for singular perturbation problems showed that AMG maintains efficiency Ef;:_’
) A )
i so long as the daminance of convection terms is not so large that there is It "’_C‘;
» "u-.\.
a total loss of positive~type. In typical physical problems, this means ;"'}"4-
that the (artificial) viscosity terms should be of a size that is typical in -
AN
upstream differencing. :';f-
oA
2. Applications et
It was essential for both focus and relevance and for quiding algo- :’,:':.:;
rithm development that the project be driven by a specific set of increasingly

difficult but realistic application problems. AMG has thus far been studied
in the context of two and three dimensional diffusion and diffusion-convection
problems and (originally discrete) geodetic problems, but the project began a
progression into increasingly more camplicated equations. Following is a
short summary of the problems beyond the present applications that were initial
abjects of study.

a. Structural Analysis. The project began to apply AMG to the linear
equations and eigenvalue problems that arise in discretizing, respectively,
static and dynamic structural analysis equations. This was done by using AMG
as a linear solver in existing structures codes.

b. Stokes Equations. Initial tests of AMG began on the symmetric
Stokes equations.

c. Navier-Stokes and Euler Equations. Early consideration was also
given to applying MAG to Navier-Stokes and Euler equations.
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d. Vectorization. The proiect has access to a Cyber 205 vector com-
puter. Recent developments include fully vectorized codes for both a model
Poisson solver (BAl) and a 3-d diffusion equation solver (Gl) based on conven-
tional multigrid. The impressive efficiency exhibited by these codes cannot
be expected to be fully achieved by AMG, but it was nevertheless important to
study the vectorizability of AMG processes. Initial study began by considering
the use of geametric information to develop logically regular grids. This was
a first step in the direction of AMG vectorization.

3. Theory
The development of new theoretical tools and insights proved indispensible _ N
during the past evolution of AMG. The need for precise quantitative insights, BN
Y




realistically dependent on the various algorithmic parameters, and the fact
that the traditional local mode analysis is not applicable to general AMG,
was motivation for development of new theoretical approaches (B2), which,
incidentally, provided improved rigorous foundation even for traditional
(geametric) multigrid.

The first step will be to complete the theory for the symmetric case, as
outlined in (B2, Sec. 1), with additional studies related to new algorithmic
developments such as the automatic calculation of smoothing relations.

Initial study considered the extension of the symmetric theory (B2) to
nonsymmetric matrices.

Arpther theoretical direction that was pursued involved the establishment
of a theory based on C - F relaxation (B3). The theory thus far does not take
into acoount any special ordering of the relaxation process, yet numerical

experience with AMG suggests that relaxing first on the coarse grid (C) points
followed by that on the remaining (F) points is often more effective. Some
results for C - F relaxation were in fact achieved by viewing AMG as approxi-
mate total reduction.

Stephen F. McCormick, Ph.D.
Principal Investigator
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